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Synopsis 

The two simplest models that can be put forward to account for the elasticity of composite ma- 
terials are the Reuss model and the Voigt model in which the constituents undergo, respectively, 
the same stress or the same strain. Experimental measurements always fall between the values 
predicted by these models. We propose correcting the Reuss model by stating 

u, = Ka, 

uf and urn being the average stresses undergone, respectively, by the reinforcing agent and the 
matrix. Similarly, we shall modify the Voigt model by supposing 

6, = 0, 

tf and ern being the average strains undergone, respectively, by the reinforcing agent and the ma- 
trix. K and L are interrelated tensors which depend on the nature of the reinforcing agent, on 
its possible orientation, and on the mechanical behavior of the interface and also on the moduli 
of the constituents. We have developed the equations for determining the tensors with regard to 
fiber composite, taking into account the characteristics of the fibers (length, diameter, orienta- 
tion, interface). The evaluation of K and L enables us, therefore, to calculate the modulus or the 
compliance. Conversely, by measuring the modulus or the compliance, one can determine K or 
L and, in this way, obtain data on the mechanism of load transfer from the matrix to the rein- 
forcing agent and thus on the behavior of their interface. The theoretical values of the Young 
modulus calculated from our model are in good agreement with the experimental values obtained 
by Lees.8 

INTRODUCTION 

Short fibers are a frequently used reinforcing agent for thermoplastics, and 
yet there are few theoretical models that enable us to forecast satisfactorily 
the modulus of elasticity of such a composite. 

In composites with dispersed fibers, stresses are transferred from the ma- 
trix to the fibers, mainly by shear. The distribution of stresses along fibers 
has been studied by numerous authors, both for elastic and for plastic defor- 
mations, or for a combination of the t ~ o . l - ~  

Another way of viewing the problem is to consider that the composite is 
macroscopically homogeneous and generally speaking anisotropic. In this 
case, one defines average stresses and strains. The relationships between the 
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values depend not only on the macroscopic deformations of the composite 
but also on micromechanics. 

The simplest models are those which make use. of the Reuss and the Voigt 
averages. If the strains are uniform, the modulus of the composite is given 
by (Voigt model) 

E = Ep,  + Emu,. 

If the stresses are uniform (Reuss model), then the modulus is 

It is possible to show by energetistic considerations that the true modulus 
of a composite falls between the two values if no slip takes place at  the inter- 
face.5 Working from these two averages, Ward has formulated a model 
which makes it possible to take into account the orientation of the fibers but 
in which the length of the fibers is not taken into consideration.6 

We have determined the moduli of elasticity of composites with short fi- 
bers oriented in various ways by using the relations in such a form that it was 
easy to make the correspondence with the results given by micromechanics. 

THEORETICAL MODEL 

The stresses applied to the composite are transferred to the fibers by the 
matrix, and so it is possible to express the average stresses and strains of the 
fibers in terms of those of the matrix. An intermediate behavior pattern be- 
tween those of the models of Voigt and Reuss can be expressed as follows: 

0, = Ka, ( 1) 

c i  = k, (2) 

in which K and L are tensors of the fourth order. If the composite is de- 
formed elastically, each phase is also deformed elastically, and one must find 
relationships between average stresses and strains: 

ti = S p ,  (3) 

t, = Sm(T,. (4) 

With the introduction of these relationships into (1) and (2), we obtain 

LS, = S,K 

and, generally speaking, the tensors L and K can each be expressed as a func- 
tion of the other: 

L = S,KS,-’. ( 5 )  

The modulus of the composite can be determined in the following way. 
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The average stress and the average strain are, respectively, 

0 = U f U /  + u,a, (6) 

t = U f t f  + Umt,. (7 ) 

By introducing (1) and (2), these relations enable us to obtain the compliance 
tensor S: 

s = (u,L + U,I)S,(UfK + umI)-l (8) 

We return to the Reuss expression in assuming that K = I ,  whence, by 
means of ( 5 ) ,  L = SfS,-I, and therefore 

s = UrS, + urns, 
We come back to Voigt's expression in supposing K = Sf-lS,, whence, by 
means of (5 ) ,  L = I ,  and so 

s = SfS,~VfS, + urnsf)-' 
In the case where some slip of the fibers takes place, we must add the extra 

deformation that it causes to the deformations due to the matrix and to the 
fibers, and (7) becomes 

= U f f f  + ' J m t m  + tg. 

If the relation between the slip and the strain can be represented by the ten- 
sor M defined by 

M = t&m-l 

that is to say, if we can invert em, we can then obtain a relation identical to 
(8) by replacing L-in this relation by 

1 

u i  
L ' =  L + - M .  

In the opposite case, we must retain the term tg, and the compliance tensor 
of the composite is 

s, = (UfK + U,l)S,(U,L + crn1)-l + t&-[(U/K + umI)Oml-l .  

If the fiber-matrix bond is weak, one can allow that the areas from which 
the matrix is absent are deformed like the matrix, one part of the deforma- 
tion being due to the slip and another to the deformation of the fibers. All 
this amounts to saying that 

L' = I (with K # Sf-'Srn). (9) 
Relations (3) to (8) are general, and the tensors K and L represent the 

transfer of the stresses due as much to the shape of the elements of the dis- 
persed phase as to their orientation. In the case of fibers characterized by 
one preponderent dimension, their length, it  is important to dissociate the in- 
fluence of the orientation from that of the other factors affecting the rein- 
forcement. We can admit that a fiber only reinforces in one direction and 
that its deformation is proportional to the uniaxial deformation of the matrix 
in the direction of the fiber. A fiber whose orientation is determined by the 
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Euler angles O and 4 can therefore be characterized by the parameter 1 de- 
fined by 

c,(e ,@> = Z c r n ( O , @ )  

in which cf(O,4) and cm(0,4) are the uniaxial strains in the direction of the 
fiber. 

Leaving aside transverse reinforcement, the compliance tensor of the fibers 
is reduced to 

I*, 
E m  

of(8,@) = ~ arn(B,@) = ha,,, (a,@). 

We can express uf(e,4) in terms of the state of stress of the matrix: 

in which A is a tensor of the fourth order whose components are the products 
of the director cosines ai ( O , $ )  of the direction (O,$):  

A i ~ k l  = a i a j a k a l *  

The stress is determined by calculating an integral in all the directions of 
the fibers. Let f(O,4) be the volumic fraction of fibers in the direction (O,$)  
per unit of solid angle, so that 

We then have 

t is determined in a similar manner, and by stating then 

and 

we obtain a relation identical to eq. (8). 
If there is some slip of the fibers, the latter must be characterized by the 

two parameters k and 1 generally depending on the deformation and there- 
fore also on the direction; S is then given by 
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in which K and L' must be evaluated separately; K is always given by relation 
(10) in which, this time, k depends on the direction. L' can be replaced by I 
in the same circumstances as previously, eq. (9). 

It is the parameters k and 1 that can be determined by micromechanics; in- 
deed, they are proportional, respectively, to the average stress and the aver- 
age strain in the fibers. So, if we consider an elastic composite, with fibers of 
length L and radius rl, we can use the model of Cox' which gives the mean 
stress in the fibers: 

with 

P = (&)'z 
and 

where G is the shear modulus of the matrix, ro is the average distance be- 
tween fibers, and A is the cross section of the fibers. This enables us to com- 
pute k from the characteristics of the fibers and of the matrix; 1 is given by 

Different authors assume other hypotheses: more sophisticated theories 
on the elastic deformation, plastic deformation of the matrix around the fi- 
bers, or a combination of the two can be taken into a ~ c o u n t . ~ ~ ~ J ~ J ~  In all 
these cases, we can compute the value of uf along the fibers, and the value of 
k is given by 

being the mean value of uf along the fibers. If the fibers are not of identi- 
cal length and diameter, it is sufficient to calculate the average values of k 
and I ;  for example, 

in which f(L,D) is the volumic fraction of fibers of length L and of diameter 
D ,  so that 
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Let us now develop expression (8) when the matrix is isotropic and the fi- 
The integrals (11) lead to the bers are regularly oriented in all directions. 

following tensor L: 

1/5 1/15 1/15 0 0 0 

1/15 115 1/15 0 0 0 

0 0 0 0 1/15 0 
0 0 0 0 0 1/15 

(The indices 1, 2, 3, 4, 5 ,  6 correspond, respectively, to the pairs of indices of 
the stress tensors 11,22, 33,23,13,12).  

The tensor S, is: 

By introducing these values into eq. (8), we then obtain a symmetrical ten- 
sor S like the tensors K and s, whose nonzero components are presented in 
eqs. (15)-(17) [p- 8971 

The general application of the foregoing to viscoelastic matrixes can be 
made fairly easily: the tensor S, is dependent upon time, as are k and 1. In 
expression (8), therefore, we must replace the tensors ‘by functions of time. 
The elastic relationship (5) is obviously no longer valid, and it will be neces- 
sary to determine both K and L. 

DISCUSSION 

Elasticity equations cannot be solved with exactitude for a material as 
complex as a composite with short fibers. Calculated moduli of elasticity 
therefore always contain approximations. 

A first point that should be emphasized is that deformations must be small; 
indeed, the tensors K and L represent and measure a linear transfer of stress. 
We have, therefore, ignored terms of the second order. Moreover, the orien- 
tation of the fibers has been assumed to be independent of the deformations 
(lo), which is no longer true in the case of large deformations. 

We have subsequently left out of consideration the transverse reinforce- 
ment of the fibers in expression (10) which is certainly not admissible in the 
case of an impregnated mat for directions perpendicular to its plane, nor for 
directions perpendicular to the fibers when these are all parallel. 

Furthermore, the model enables us to obtain exact values of the modulus 
only if we know k and 1 with accuracy and these depend on the behavior of 
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TABLE I 
Distribution of the Length of the Fibersa 

% of total volume of fibers 

Length, cm 1.7%b 3.86% 8.3% 13.4% 19.4% 26.5% 

0.508 
0.190 
0.102 
0.0635 
0.0381 
0.019 
0.0076 

Average length 

36.2 27.9 
17.3 18.9 
22.1 26.6 
13.9 14.6 
8.3 9 
1.2 2.2 
1 0.8 
0.249 0.216 

17.8 
17.3 
33.4 
19  
10.3 
1.6 
0.7 
0.190 

6.3 
12.7 
39.9 
21.8 
14.5 

3.5 
1.3 
0.112 

3 
9.7 

13.9 
47.2 
20.7 

3.7 
1.9 
0.079 

1.2 
2.5 
9 

40 
36.7 

6.3 
4.3 
0.051 

a According to Lees.8 
b Volume fraction of the fibers, in %. 

the fibers. In fact, it is better to determine k from experimental modulus 
measurements and to consider this value as the actual efficacity of the rein- 
forcement. This value of k has a physical meaning (ratio of stress in fibers 
and in matrix). The “fiber efficiencies” 4 (defined by E, = 4Efuf + EmVm 
or in a similar manner) is quite arbitrary. The k parameter varies from 0 to 
EfIE,; so, to compare different composites, it can be more useful to use the 

”: 

Volurnic fraction of fibers , % 

Fig. 1. Experimental and theoretical Young moduli of unidirectional composite vs volumic 
fraction of fibers for three moduli of the matrix: (x) Em = 3.28 X lo9 dynes/cm2; (0) Em = 11.8 
X lo9 dynes/cm2; (A) Em = 29.6 X lo9 dynes/cm*. theoretical predictions by our 
model; dotted lines: law of mixtures. Young modulus of the fibers: 716 X los dynes/cm2. 

Full lines: 
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TABLE I1 
Polyethylene Reinforced with Short Glass Fibersa 

Young modulus of the Fiber 
Young modulus con- composite,b lo9  dynes/cmZ 

l o 9  dynes/cm* % A B C exper.c czZcJd 
of the matrix, tent, kE,Ef-’ k E  E -’ 

3.28 
3.28 
3.28 
3.28 
3.28 
3.28 

10.1 
10.1 
10.1 
10.1 
10.1 
10.1 
11.8 
11.8 
11.8 
11.8 
11.8 
11.8 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
19 
1 9  
19 
19 
19 
29.6 
29.6 
29.6 
29.6 
29.6 
29.6 

1.7 
3.86 
8.3 

13.4 
19.4 
26.5 

1.7 
3.86 
8.3 

13.4 
19.4 
26.5 

1.7 
3.86 
8.3 

13.4 
19.4 
26.5 

1.7 
3.86 
8.3 

13.4 
19.4 
26.5 

1.7 
3.86 
8.3 

13.4 
19.4 

1.7 
3.86 
8.3 

13.4 
19.4 
26.5 

15.4 
30.8 
62.4 
98.8 

142 
192 

22.1 
37.4 
68.7 

105 
147 
197 

23.8 
39.0 
70.3 

106 
148 
198 

27.6 
42.7 
13.8 

110 
152 
201 

30.9 
45.9 
76.9 

112 
154 

41.2 
56.1 
86.6 

122 
163 
212 

8.96 
15.2 
27 
39.8 
57.7 
62 
14.9 
27 
41.1 
54.7 
86.9 

18.9 
28.9 
47 
66.8 
95 

114 
21.4 
29.2 
47.1 
68.6 
96.5 

30.7 
35.8 
57.2 
77.2 

37.9 
49.1 
67.6 
89.6 

106 

115 

117 

135 
159 

9.52 
17.1 
32.0 
45.0 
56.7 
67.5 
18.0 
28.0 
48.4 
68.7 
89.8 

19.9 
30.1 
51.1 
72.3 
94.7 

24.1 
34.7 
56.9 
79.5 

112 

118 

104 
130 
27.7 
38.6 
61.4 
84.9 

38.6 
50.1 
74.0 
99.2 

111 

128 
159 

0.464 
0.423 
0.380 
0.349 
0.343 
0.249 
0.393 
0.610 
0.507 
0.435 
0.507 
0.436 
0.590 
0.620 
0.581 
0.548 
0.557 
0.471 
0.478 
0.491 
0.519 
0.528 
0.542 
0.458 
0.985 
0.614 
0.640 
0.588 
0.679 
0.709 
0.729 
0.648 
0.619 
0.754 
0.644 

0.523 
0.513 
0.480 
0.426 
0.331 
0.300 
0.662 
0.664 
0.657 
0.604 
0.540 
0.498 
0.680 
0.682 
0.676 
0.623 
0.566 
0.517 
0.728 
0.713 
0.702 
0.667 
0.625 
0.570 
0.744 
0.726 
0.730 
0.705 
0.639 
0.785 
0.780 
0.781 
0.744 
0.712 
0.667 

aThe Young modulus of the fibers is 716 x l o 9  dynes/cm2, and the diameter is 
0.0157 cm (248 filaments of 1 0  pm). The lengths are taken from Table I. 

b A = Law of mixtures; B = according to Lees; C = from our model. 
C Deduced from the experimental Young modulus of the composite. 
d Calculated from relation (13). The stress distribution along the fibers is taken from 

the Cox model.’ 

value of kE,IEf, which represents the transfer of stresses relative to the max- 
imum transfer. 

We have applied the theoretical results to the experimental values deter- 
mined by  lee^.^.^ He measured the modulus of elasticity of polyethylenes of 
different moduli reinforced with variable quantities of E glass fibers. The 
lengths of the fibers were measured after compounding (Table I). 

In Table 11, we have compared the reinforcement determined experimen- 
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I I I 
0 to 20 30 

Volumic fraction of fibers , % 

Fig. 2. Predicted Young moduli of three composites with different orientations of fibers: (A) 
unidirectional [(o) experimental]; (B) planar mat; (C) isotropic composite. Modulus of the ma- 
trix: 29.6 X lo9 dynes/cm2; modulus of the fibers: 716 X lo9 dynes/cm2. 

tally with the theoretical reinforcement calculated taking for granted elastic 
deformation and a distribution of tensile stresses along the fiber identical to 
that of the Cox mode1.l 

Values of k are calculated using relations (13) and (14) with the fiber 
lengths experimentally determined by Lees.7 Some values of Table I1 have 
been plotted on Figure 1 to compare the experimental moduli to the moduli 
predicted by our theory and the law of mixtures. 

The experimental values are much closer to the values of our model than to 
the law of mixtures. Although the discrepancies are of the order of experi- 
mental errors, the experimental values are perhaps somewhat lower than an- 
ticipated. This discrepancy may result from plastic deformation of the ma- 
trix or nonlinear behavior at  the ends of the fibers, or also from imperfect ori- 
entation or dispersion of the reinforcing agent. All these factors lead to a 
lower value of the Young modulus of the composite, which is effectively ob- 
served. 

The main interest of short fibers is for isotropic reinforcement (or nearly 
isotropic) and our model enables us to extrapolate the Young modulus of a 
composite with parallel orientation to the modulus of a composite with an- 
other one. Using expression (14), we have shown, in Figure 2, the calculated 
reinforcements one would expect for a matrix with a Young modulus of 26.9 
lo9 dynes/cm2, for three types of orientation (isotropic, planar, and parallel). 
The values of k and 1, calculated according to expression (13), are identical 
for the three orientations. 
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CONCLUSIONS 

We are proposing a deformation model for composites reinforced with 
short fibers. The components of the compliance tensor of the composite 
have been determined as functions of the parameters k and I, which repre- 
sent and measure the linear transfer of the stresses in the composite and 
which are directly linked to the average stresses and strains in the fibers. We 
have developed these expressions in the case of an isotropic or planar orienta- 
tion of the fibers. Comparison of the theory with the experiment enables us 
to obtain in situ a quantitative measurement of the transfer of stresses for 
short fibers oriented in any given way. The parameters k and 1 used in the 
expressions of the compliance tensor are directly dependent upon the trans- 
fer of the stresses; the macroscopic measurements thus offer access to the 
properties of the interface, especially important when short fibers are used. 

SUMMARY 

The two simplest models that can be put forward to account for the elastic- 
ity of composite materials are the Reuss model, if we accept that the different 
constituents undergo the same stress, and the Voigt model, in which the con- 
stituents are subjected to identical strains. Experimental measurements al- 
ways fall between the values predicted by these models. We propose correct- 
ing the Reuss model by stating 

af = Ka, 

uf and urn being the average stresses undergone, respectively, by the reinforc- 
ing agent and the matrix. 

Similarly, we shall modify the Voigt model by supposing 
tl = k, 

tf and ern being the average strains undergone, respectively, by the reinforc- 
ing agent and the matrix. K and L are the interrelated constants which de- 
pend on the nature of the reinforcing agent, on its possible orientation, and 
on the mechanical behavior of the interface and also on the moduli of these 
constituents. 

We have developed the equations for determining the values of the tensors 
K and L with regard to fiber-reinforced composites taking into account the 
following characteristics: length and diameter of the fibers; mechanical be- 
havior of the matrix-fiber interface (elastic, plastic, or stress transfer due to 
normal forces); orientation of the fibers (we have considered the following 
three cases: axial, planar, and isotropic orientation); and stress applied to 
the composite. 

The evaluation of K or L enables us, therefore, to calculate the modulus or 
the compliance. Conversely, by measuring the modulus or the compliance, 
one can determine K or L and in this way obtain data on the mechanism of 
load transfer from the matrix to the reinforcing agent and thus on the behav- 
ior of their interface. The theoretical values of the Young modulus calculat- 
ed from our model are in good agreement with the experimental values ob- 
tained by Lees.* 
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Notations 

The indices f and m refer, respectively, to the fibers and to the matrix; the 
symbols without indices refer to the composite. 
E Young’s modulus 
1.1 Poisson’s ratio 
Q, E tensors of stresses and deformations 
S compliance tensor 
K ,  L tensors of the fourth order representing the transfer of the stresses and 

strains. 
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